On the Structure of the Square of a C 0 (1) Operator *

نویسندگان

  • Ronald G Douglas
  • Ciprian Foias
چکیده

0 While the model theory for contraction operators (cf. [4]) is always a useful tool, it is particularly powerful when dealing with C 0 (1) operators. Recall that an operator T on a Hilbert space H is a C 0 (N)-operator (N = 1, 2. . .) if T ≤ 1, T n → 0 and, T n → 0 (strongly) when n → ∞ and rank(1 − T * T) = N. In particular, a C 0 (1) operator is unitarily equivalent to the compression of the unilateral shift operator S on the Hardy space H 2 to a subspace H 2 ⊖ mH 2 for some inner function m in H ∞. In this note we use the structure theory to determine when the lattices of invariant and hy-perinvariant subspaces differ for the square T 2 of a C 0 (1) operator and the relationship of that to the reducibility of T 2. To accomplish this task we first determine very explicitly the characteristic operator function for T 2 and use the representation obtained to determine when the operator is irreducible. While every operator T in C 0 (1) is irreducible, it does not follow that T 2 is necessarily irreducible, that is, has no reducing subspaces. In particular, we characterize those T in C 0 (1) for which T 2 is irreducible but for which the lattices of invariant and hyperinvariant subspaces for T 2 are distinct. Finally, we provide an example of an operator X on a four dimensional Hilbert space for which the two lattices are distinct but X is irreducible, and show that such an example is not possible on a three dimensional space. This work was prompted by a question to the first author from Ken Dykema (Sect. 2, [2]) concerning hyperinvariant subspaces in von Neumann algebras. He asked whether the lattices of invariant and hyperinvariant subspaces for an irreducible matrix must coincide. He provides an * 2000 AMS Classification: 47A15, 47A45.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

c-Frames and c-Bessel mappings

The theory of c-frames and c-Bessel mappings are the generalizationsof the theory of frames and Bessel sequences. In this paper, weobtain several equivalent conditions for dual of c-Bessel mappings.We show that for a c-Bessel mapping $f$, a retrievalformula with respect to a c-Bessel mapping $g$ is satisfied if andonly if $g$ is sum of the canonical dual of $f$ with a c-Besselmapping which  wea...

متن کامل

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

Hoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...

متن کامل

Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras

In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005